
Using GNU Octave for Handwritten Digit Recognition

Michael J. M. Mazack
Department of Scientific Computation
University of Minnesota - Twin Cities

April 22, 2010

Introduction

GNU Octave1 is a free high-level language for numerical computation largely compatible with MathWorks
Inc.’s MATLAB. In this paper, we discuss how to use GNU Octave for handwritten digit recognition using
a database of training and test digits from the United States Postal Service2. We test a modified version
of the SVD classification algorithm described by Savas in [1] as well as the NMF classification algorithm
described by Mazack in [2]. It is assumed that the reader is already familiar with the basics of the MATLAB
language. Public domain source code for the two algorithms is also provided in the appendix.

Handwritten Digit Recognition

Background

The postal services of various countries rely on algorithms for the automatic classification and sorting of
letters by machine. Several such algorithms have been developed, most notably those discussed by Savas [1].
The computational aspects of the sorting problem can reduced to the automatic classification of a single,
unknown, handwritten “test digit” using a database of known “training digits”. The databases we consider
consist of 7291 grayscale images of training digits and 2007 grayscale images of test digits. For more details
on the databases, see [3].

Loading the Databases

Correct loading of the databases is paramount to obtaining correct classification results. In solving this
problem, we first note that the two databases zip.train and zip.test are ASCII text files of the same
format. The lines stored in the databases consist of 257 floating point numbers terminated by a line break.
The first entry of a line is an integer-valued floating point number correctly identifying the digit, while the
remaining 256 entries are the column-wise entries of a 16× 16 matrix corresponding to the 2D monochrome
image of the digit. The digits in the database are unsorted. Thus, it is necessary to use some sort of indexing
scheme to properly identify where they should be placed.

Files can be opened in GNU Octave and MATLAB by using the fid = fopen(filename) command.
This command takes the path of the file3 as its argument and returns a value identifying the opened file.
Once a file has been opened, data can be read using a variety of commands. The most notable (and perhaps
most useful) command is tline = fgetl(fid). This command will read the next line of the file identified
by fid into the string variable tline. Success of the read can be checked with the ischar(tline) command,
which will return false if the end of the file has been reached or true otherwise. After the ASCII string data
has been read from the file fid and stored into the variable tline, it can be converted into a vector of
floating point numbers using the command place holder = sscanf(tline, ’%f’).

1GNU Octave on the web: http://www.octave.org
2Digit databases available at: http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
3The path is given as a string in single quotes. For example, fid = fopen(’data/zip.train’);

1

At this point the correct digit identifier is stored in place holder(1), and a vector in R256 containing
the stacked columns is stored in place holder(2:257) – which can be normalized to be valued between 0
(white) and 1 (black). These vectors are placed column-wise into a three dimensional array where the third
dimension denotes the correct digit identifier4. For the exact structure and implementation of loading the
database files, please see make digit mats.m in the appendix.

Displaying Digits

Displaying images in GNU Octave is somewhat different than what is done in MATLAB. GNU Octave first
requires a color map to display images. A default color map is provided (colormap(’default’)) along with
a gray color map which can be set for our 0 (white) and 1 (black) scheme by using the command colormap(1

.- gray). Colors of the images are determined by the closest index in the colormap to the entries in the
image. Thus, it is necessary to rescale the values in the image between 0 and the length of the columns of
the colormap (usually 256). This will ensure that the full range of grays will be acheived by the image. After
choosing a proper colormap, images can be rendered with the image(A) command, where A is the image
matrix to be displayed. In our case of a vector in R256 it is necessary to decompose the stacked columns into
a 16× 16 matrix. This result can be acheived using the built-in reshape(b, 16, 16) command for a vector
b of length 256. Below are several digits from the database after being renormalized. For further details,
please see the source code show digit.m in the appendix.

Figure 1: Several Images from the Database. Similar images can be generated using the file show digit.m.

Algorithm Overview

We test a modified version of the the SVD-based algorithm in [1] and the NMF-based algorithm in [2]. We
begin by constructing the digit matrices Di for every i ∈ {0, 1, ..., 9} whose columns consist of all digits of
type i from the training digit database. These matrices are built with the file make digit mats.m.

D5 =

 | | | ... |
5 5 5 ... 5
| | | ... |

 D5 ∈ R256×556

Figure 2: Unrolled 16× 16 matrices are stored as vectors in R256 which are columns of D5.

Once every Di matrix has been formed, we open the test digit database and sequentially read the digits into
a vector d ∈ R256 and consider the least squares problem

ρi = min
x
‖Dix− d‖22.

Our goal is to classify d by finding ρi for every i ∈ {0, 1, ..., 9} and classifying d as the i given by mini{ρi}. In
principle, this can only be done for low-rank approximations of Di due to many of the Di matrices spanning
R256. As shown by Mazack in [3] and [2], the structure of the SVD and NMF can be used to exploit
effecient solving of the least squares problem by using only the left-most matrix from the factorizations. We
summarize the algorithm below.

4For the digit 0, an array index value of 10 is used to prevent underflow.

2

Let i ∈ {0, 1, ..., 9}.

Do once at startup:

• Form the Di matrices for every i.

• Compute a rank-k approximation for the column space Mi for each Di.

Let d ∈ R256 be a test digit to classify.

• For every i, compute qi = miny ‖Miky − d‖22.

• Compute mini{qi} and classify d as an “i”.

An implementation of the algorithm is given in run algorithm.m. Since GNU Octave does not natively sup-
port NMF as of version 3.2.4, a simple public-domain implementation of the multiplicative update algorithm
for NMF from [2] has been provided in the file nmf mu.m.

Classification Results

Below are a few statistical results obtained by running both the SVD-based and NMF-based classification
algorithm with a rank-10 approximation. The rank can be adjusted by changing the value of rnk in the file
run algorithm.m.

Accuracy Results for SVD-Based Algorithm

Digit Sample Size Correct Incorrect Success Rate
0 359 354 5 98.607%
1 264 260 4 98.485%
2 198 175 23 88.384%
3 166 142 24 85.542%
4 200 183 17 91.500%
5 160 142 18 88.750%
6 170 164 6 96.471%
7 147 138 9 93.878%
8 166 150 16 90.361%
9 177 170 7 96.045%

Average Success Rate for SVD: 93.572%.

Accuracy Results for NMF-Based Algorithm

Digit Sample Size Correct Incorrect Success Rate
0 359 352 7 98.050%
1 264 260 4 98.485%
2 198 179 19 90.404%
3 166 143 23 86.145%
4 200 174 26 87.000%
5 160 139 21 86.875%
6 170 162 8 95.294%
7 147 134 13 91.156%
8 166 146 20 87.952%
9 177 167 10 94.350%

Average Success Rate for NMF: 92.476%.

3

Concluding Remarks

GNU Octave provides a free high-level language capable of allowing for the simple implementation of common
low-rank approximation based handwritten digit recognition algorithms. We encourage the use of GNU
Octave for such projects. We also release the source code in the appendix into the public domain and
humbly request the citation of this paper if the code should be used.

References

[1] B. Savas. “Analyses and Tests of Handwritten Digit Recognition Algorithms.” Master’s thesis, Mathematics
Department, Linköping University, 2003.

[2] M. Mazack. “Non-negative Matrix Factorization with Applications to Handwritten Digit Recognition.” Depart-
ment of Scientific Computation, University of Minnesota, 2009.

[3] M. Mazack. “Algorithms for Handwritten Digit Recognition.” Master’s colloquium, Mathematics Department,
Western Washington University, 2009.

Appendix

The code implementing the SVD-based algorithm described in [3] and the NMF-based algorithm in [2] is
given below. This code is hereby released into the public domain with permission for limitless redistribution
and modification. All that is asked for in return is a citation of this paper.

Execution Details and Instructions:

• Place the database files zip.train and zip.test in the ./data/ directory.

• To run the SVD-based algorithm: [stats, success rate] = run algorithm(’svd’);

• To run the NMF-based algorithm: [stats, success rate] = run algorithm(’nmf’);

• General statistical data is stored in stats according to the tables in the body of the paper.

• The average success rate is stored in success rate.

• The rank can be adjusted by changing the value of rnk in run algorithm.m.

NOTE: The code below is not completely copy-and-paste safe. The ’ character must be changed to the
ASCII value of the apostrophe. To fix this, simply run a find/replace replacing ’ with the keyboard value of
apostrophe after copy-and-paste.

run algorithm.m

function [stats, success_rate] = run_algorithm(algo_type, digit_mats)

rnk = 10;

if ~exist(’digit_mats’)

digit_mats = make_digit_mats(’data/zip.train’);

end

if strcmp(algo_type, ’svd’)

for i = 1:10

[u, s, v] = svd(digit_mats(:, :, i));

M(:, :, i) = u(:, 1:rnk);

end

4

elseif strcmp(algo_type, ’nmf’)

for i = 1:10

[w, h] = nmf_mu(digit_mats(:, :, i), rnk, 100);

M(:, :, i) = w;

end

end

fid = fopen(’data/zip.test’);

stats = zeros(10, 5); stats(:, 1) = 1:10; stats(10, 1) = 0;

while 1

tline = fgetl(fid);

if ~ischar(tline)

break;

end

td = sscanf(tline, ’%f’);

digit_num = td(1, 1);

if digit_num == 0

digit_num = 10;

end

test_dig = td(2:257);

test_dig = 0.5.*(test_dig .+ 1);

stats(digit_num, 2) = stats(digit_num, 2) + 1;

resids = zeros(10, 1);

if strcmp(algo_type, ’svd’)

for i = 1:10

x = M(:, :, i)’*test_dig;

resids(i) = norm(M(:, :, i)*x - test_dig);

end

elseif strcmp(algo_type, ’nmf’)

for i = 1:10

x = M(:, :, i)\test_dig;

resids(i) = norm(M(:, :, i)*x - test_dig);

end

end

[smallest_resid, digit_result] = min(resids);

if digit_num == digit_result

stats(digit_num, 3) = stats(digit_num, 3) + 1;

else

stats(digit_num, 4) = stats(digit_num, 4) + 1;

end

end

fclose(fid);

stats(:, 5) = stats(:, 3)./stats(:, 2);

success_rate = sum(stats(:, 3))/sum(stats(:, 2));

5

make digit mats.m

function [digit_mats] = make_digit_mats(filename)

fid = fopen(filename);

counter = zeros(10);

while 1

tline = fgetl(fid);

if ~ischar(tline)

break;

end

place_holder = sscanf(tline, ’%f’);

dig_num = place_holder(1, 1);

if dig_num == 0

dig_num = 10;

end

counter(dig_num) = counter(dig_num) + 1;

digit_mats(:, counter(dig_num), dig_num) = place_holder(2:257);

end

fclose(fid);

digit_mats = 0.5.*(digit_mats .+ 1);

nmf mu.m

function [w, h] = nmf_mu(a, k, maxiter)

[m, n] = size(a);

w = rand(m, k);

h = rand(k, n);

for i = 1:maxiter

h = h.*(w’*a)./(w’*w*h + 1e-9);

w = w.*(a*h’)./(w*h*h’ + 1e-9);

end

show digit.m

function show_digit(img)

img_copy = img .- min(img);

img_copy = (256/max(img_copy)).*img_copy;

colormap(1 .- gray);

image(reshape(img_copy, 16, 16)’);

6

