
Non-negative Matrix Factorization with Applications to

Handwritten Digit Recognition

Michael J. M. Mazack
Department of Scientific Computation
University of Minnesota - Twin Cities

December 15, 2009

Introduction

In the last decade, non-negative matrix factorization (NMF) has become a widely used method for solving
problems in data mining and pattern recognition. The NMF in its present state can be traced back to
the work of Paatero and Tapper in 1994 at the University of Helsinki under the name, “positive matrix
factorization” [1]. This technique was popularized by Lee and Seung in 1999 under its current name, “non-
negative matrix factorization” [2]. In the last decade, Lee and Seung have continued to develop and publish
algorithms for the computation of NMF [3]. Since 2005, sparse variants of NMF have become quite popular
and have been successfully used in cancer class discovery [4] and microarray data analysis [5]. Recent work has
focused on improving existing NMF algorithms by attempting to remove random initialization requirements.
In this paper, we discuss dense and sparse algorithms for the computation of NMF, provide their MATLAB
implementations, and examine the use of NMF in the context of handwritten digit recognition.

NMF and its Properties

We begin our discussion of NMF with its definition and a few observations.

Definition 1. Let A ∈ Rm×n be matrix such that aij ≥ 0 for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
(henceforth, A ≥ 0). Then for k ≤ min{m,n} there exist W ∈ Rm×k ≥ 0 and H ∈ Rk×n ≥ 0 such that
A ≈WH.

The first observation to make from the definition is that the NMF gives an approximation for the matrix
A and the number k ≤ min{m,n} determines the rank of the approximation. Also, in the case of k =
min{m,n}, it is possible to achieve the equality1 A = WH.

The second observation is that the columns of W form a k-dimensional approximation for the column
space of A. To see this, let x ∈ Rn and right-multiply the NMF by x,

A ≈WH ⇒ Ax ≈WHx = Wy , y = Hx.

Third, we observe that the NMF is not unique. For any diagonal matrix D ∈ Rk×k with stictly positive
diagonal entries,

A ≈WH = WDD−1H = (WD)(D−1H) = W ′H ′.

Thus, the NMF is not unique.
1The achievement of equality in this case relies on the NMF algorithm used and whether the objective-function values

converge to a global minimum.

1

Methods for Computing Dense NMF

The NMF has been traditionally been thought of as a solution to the following optimization problem [3]

Minimize f(W,H) =
1
2
‖A−WH‖2F subject to:

W ∈ Rm×k ≥ 0,

H ∈ Rk×n ≥ 0.

We now discuss the two most widely used methods for computing a dense NMF. We first examine the
multiplicative update method, and later examine the method of alternating least squares.

Multiplicative Update

The multiplicative update method approaches the optimization problem in terms of Karush-Kuhn-Tucker
(KKT) conditions [3]. It begins with random W ≥ 0 and random H ≥ 0 and iterates the below a chosen
number of times:

Hij ← Hij

(
WTA

)
ij

(WTWH)ij

, Wij ←Wij

(
AHT

)
ij

(WHHT)ij

.

This method has several problems in practice. For example, there is no guarantee that the denominators
are nonzero, so a small positive number is usually added to prevent division by zero. Next, it is possible to
converge to a saddle point or one of several local minima instead of the global minimum. For an extensive
treatment and discussion on the multiplicative update method see [3].

A simple MATLAB implementation of multiplicative NMF is given below.

function [w, h] = nmf_mu(a, k, maxiter)

[m, n] = size(a);

w = rand(m, k);

h = rand(k, n);

for i = 1:maxiter

h = h.*(w’*a)./(w’*w*h + 1e-9);

w = w.*(a*h’)./(w*h*h’ + 1e-9);

end

Alternating Least Squares

A better approach to solving the NMF optimization problem is by the method of alternating least squares.
This method arises out of the fact that the optimization problem is convex in both W and H, but not
simultaneously. The algorithm starts with a random W ≥ 0 and solves the below in the order given [5].

min
H
‖WH −A‖2F such that H ≥ 0,

min
W
‖HTWT −AT ‖2F such that W ≥ 0.

At each step, the algorithm replaces any negative values resulting from the least squares solution with zeros.
This is what is called “non-negative least squares.” For this reason, the alternating (non-negative) least
squares NMF algorithm is often called NMF/ANLS.

A simple implementation of NMF/ANLS in MATLAB is given on the next page.

2

function [w, h] = nmf_anls(a, k, maxiter)

[m, n] = size(a);

w = rand(m, k);

for i = 1:maxiter

% Solve for h.

for j = 1:n

h(:, j) = lsqnonneg(w, a(:, j));

end

% Solve for w’.

for j = 1:m

w(j, :) = lsqnonneg(h’, a(j, :)’)’;

end

end

The above implementation is the most basic means of solving NMF/ANLS and is rather inefficient. Many
improvements have been made to the algorithm, most notably the projected gradient implementation by Lin
in 2007 [6].

Methods for Computing Sparse NMF

We now examine two popular methods for computing sparse NMF, namely SNMF/R and SNMF/L. The
SNMF/R method allows for regulation of sparsity in the right factor H while the SNMF/L method allows for
regulation of sparsity in the left factor W . These two methods are very similar and both can be approached
as a modified NMF/ANLS problem.

SNMF/R

SNMF/R seeks to minimize the number of nonzero entries in H while attempting to provide a W such that
A ≈ WH is a useful approximation. This is accomplished by the minimization of a new objective function
[5],

f(W,H) =
1
2
‖A−WH‖2F + η‖W‖2F + β

n∑
j=1

‖H(:, j)‖21.

The parameter β is used to adjust the sparsity in H while the parameter η is used to preserve accuracy
in W . A sparse H is easily found by choosing a large value of β and a small value of η. We can compute
SNMF/R by solving the ANLS problem below where e1×k is a vector of all ones2.

min
H

∣∣∣∣∣∣∣∣(W√
βe1×k

)
H −

(
A

01×n

)∣∣∣∣∣∣∣∣2
F

, such that H ≥ 0.

min
W

∣∣∣∣∣∣∣∣(HT

√
ηIk

)
WT −

(
AT

0k×m

)∣∣∣∣∣∣∣∣2
F

, such that W ≥ 0.

A MATLAB implementation is easily written by slightly modifying the one for NMF/ANLS.

2This ANLS problem is derived from exploiting properties of the Frobenius norm.

3

function [w, h] = snmfr(a, beta, eta, k, maxiter)

[m, n] = size(a);

w = rand(m, k);

for i = 1:maxiter

% Solve for h.

for j = 1:n

h(:, j) = lsqnonneg([w ; sqrt(beta)*ones(1,k)], ...

[a(:, j) ; 0]);

end

% Solve for w’.

for j = 1:m

w(j, :) = lsqnonneg([h’ ; sqrt(eta).*eye(k)], ...

[a(j, :)’ ; zeros(k, 1)])’;

end

end

% We now have a sparse h.

h = sparse(h);

SNMF/L

The SNMF/L seeks to minimize the number of nonzero entries in W while attempting to provide H such
that A ≈WH is a useful approximation. SNMF/L is derived in a manner very similar to that of SNMF/R.
The objective function for SNMF/L [5] is

f(W,H) =
1
2
‖A−WH‖2F + η‖H‖2F + β

m∑
i=1

‖W (i, :)‖21.

Similar to SNMF/R, the parameter β is used to adjust the sparsity in W while the parameter η is used to
preserve accuracy in H. The same rule of thumb for obtaining a sparse H in SNMF/R applies to obtaining
a sparse W with SNMF/L. The NMF/ANLS problem for SNMF/L is below

min
H

∣∣∣∣∣∣∣∣(W√
ηIk

)
H −

(
A

0k×n

)∣∣∣∣∣∣∣∣2
F

, such that H ≥ 0

min
W

∣∣∣∣∣∣∣∣(HT
√
βe1×k

)
WT −

(
AT

01×m

)∣∣∣∣∣∣∣∣2
F

, such that W ≥ 0.

MATLAB implementation:

function [w, h] = snmfl(a, beta, eta, k, maxiter)

[m, n] = size(a);

w = rand(m, k);

for i = 1:maxiter

% Solve for h.

for j = 1:n

h(:, j) = lsqnonneg([w ; sqrt(eta).*eye(k)], ...

[a(:, j) ; zeros(k, 1)]);

4

end

% Solve for w’.

for j = 1:m

w(j, :) = lsqnonneg([h’ ; sqrt(beta)*ones(1, k)], ...

[a(j, :)’ ; 0])’;

end

end

% We now have a sparse w.

w = sparse(w);

Handwritten Digit Recognition

Background

The postal services of various countries rely on algorithms to automatically classify handwritten digits to
quickly sort mail by postal codes using a machine. Some such algorithms are based on using low-rank
approximations via singular-value decomposition (SVD) in conjunction with linear least squares methods
[7]. The NMF provides an alternate way to obtain a low-rank approximation of a non-negative matrix and
is worth investigating for this purpose.

The problem can be posed as the following: automatically classify a single, unknown, handwritten “test
digit” using a database of known “training digits”. Several databases are freely available, including a database
from the United States Postal Service3. This database consists of 7291 grayscale images of training digits
and 2007 grayscale images of test digits stored as 16 × 16 matrices with values between -1 (white) and 1
(black). We use this database in our tests after rescaling the values between 0 (white) and 1 (black). For a
specific breakdown of the database see [8].

Figure 1: Several Images from the Database

Classification Algorithm

We propose a classification algorithm using techniques similar to those done in [7]. That is, we begin by
constructing the matrices Di for every i ∈ {0, 1, ..., 9} whose columns consist of all digits of type i from the
training digit database. Each 16 × 16-pixel image has a corresponding and equivalent vector form in R256

formed by stacking the 16 columns.

D5 =

 | | | ... |
5 5 5 ... 5
| | | ... |

 D5 ∈ R256×556

Figure 2: Unrolled 16× 16 matrices are stored as vectors in R256 which are columns of D5.
3Available at: http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html

5

Once every Di matrix has been formed, we take the vector counterpart of a test digit d ∈ R256 and
consider the least squares problem

ρi = min
x
‖Dix− d‖22.

Our goal is to classify d by finding ρi for every i ∈ {0, 1, ..., 9} and classifying d as the i given by mini{ρi}. In
principle, this can only be done for low-rank approximations of Di due to many of the Di matrices spanning
R256. This encourages the use of NMF. Recalling that the columns of Wik

form a basis for the column space
of Dik

, we have

Dix ≈ Dik
x = Wik

Hik
x = Wik

y , y = Hik
x

⇒ min
x
‖Dik

x− d‖22 ≈ min
y
‖Wik

y − d‖22.

The above allows for the use of Wik
in the classification algorithm instead of Dik

. An intriguing idea is
to use SNMF/L to obtain a sparse Wik

which can be exploited to solve the least squares problem at each
step efficiently. This is considered and tested in the next section.

Below is a summary of the algorithm.

Let i ∈ {0, 1, ..., 9}.

Do once at startup:

• Form the Di matrices for every i.

• Compute the NMF (or SNMF/L) of each Di with a rank-k approximation.

Let d ∈ R256 be a test digit to classify.

• For every i, compute qi = miny ‖Wik
y − d‖22.

• Compute mini{qi} and classify d as an “i”.

NMF Classification Algorithm Test Results

Our tests yielded an average correct classification rate of 92.676% using a rank-10 NMF approximation of
each training-digit matrix. This rate is comparable to the rate of 93.572% obtained in [8] for a rank-10 SVD
approximation. See the table for specific results.

Digit Sample Size Correct Incorrect Success Rate
0 359 353 6 98.329%
1 264 257 7 97.348%
2 198 175 23 88.384%
3 166 141 25 84.940%
4 200 178 22 89.000%
5 160 148 12 92.500%
6 170 163 7 95.882%
7 147 129 18 87.755%
8 166 149 17 89.759%
9 177 167 10 94.350%

Average Success Rate: 92.676%.

The more interesting problem lies in using SNMF/L to force sparsity in each Di. For these tests, we
used a rank-10 approximation for each Di taking η = 0.1 and varying the values of β. The table gives the
minimum and maximum number of nonzero entries over all Di and the success rate for each β. Note that
each Di ∈ R256×10 consists of 2560 entries.

6

β min (nnz(Dik
)) max (nnz(Dik

)) Success Rate
0.01 542 1271 92.676%
0.1 529 1199 91.179%
1.0 269 1000 90.533%
10.0 198 930 90.882%
100.0 218 674 88.490%
1000.0 157 411 84.853%
10000.0 157 256 80.668%

Concluding Remarks

The NMF provides a way for approximating a non-negative matrix with some useful properties. In particular,
NMF is a practical alternative to using the SVD to obtain low-rank approximations of non-negative matrices.
As we have shown, NMF can be used for classifying handwritten digits and is competitive with SVD-based
algorithms in terms of classification accuracy.

The more interesting result comes from forcing sparsity in the least-squares problem with SNMF/L.
Forced sparsity results in increased performance, but reduces the accuracy significantly. Given that the
initial data is dense, it is intriguing that forcing sparsity to the extent of nonzero entries totaling less than
10% of the matrix entries yielded any accurate results at all.

We also encourage the study of NMF, as it is a relatively recent phenomena with many applications and
unanswered questions. Additionally, we encourage the use of SNMF/R and SNMF/L by placing the simple
MATLAB implementations presented in this paper in the public domain.

References

[1] P. Paatero and U. Tapper. Positive matrix factorization: a nonnegative factor model with optimal utilization of
error estimates of data values. Environmetrics, 5:111126, 1994.

[2] D. Lee and H. Seung. “Learning the parts of objects by non-negative matrix factorization”. Nature 401 6755:788-
791, 1999.

[3] D. Lee and H. Seung “Algorithms for Non-negative Matrix Factorization.” Advances in Neural Information
Processing Systems 13: Proceedings of the 2000 Conference. MIT Press. pp. 556-562, 2001.

[4] Y. Gao and G. Church. “Improving molecular cancer class discovery through sparse non-negative matrix factor-
ization.” Bioinformatics, 21:3970-3975, 2005.

[5] H. Kim and H. Park. “Sparse non-negative matrix factorizations via alternating non-negativity-constrained least
squares for microarray data analysis.” Bioinformatics, 23:1495-1502, 2007.

[6] C.-J. Lin. “Projected gradient methods for non-negative matrix factorization.” Neural Computation, 19:2756-
2779, 2007.

[7] B. Savas. “Analyses and Tests of Handwritten Digit Algorithms.” Master’s thesis, Mathematics Department,
Linköping University, 2002.

[8] M. Mazack. “Algorithms for Handwritten Digit Recognition.” Master’s colloquium, Mathematics Department,

Western Washington University, 2009.

7

