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The Problem

Automatically classify a single unknown handwritten digit using a
database of known digits.

An Unknown Digit (Test Image)

0? ... 2? ... 3? ... 5? ... 9?
16× 16-pixel grayscale images (matrices) of digits 0, ..., 9.

Application: Automatic mail sorting at the post office.
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Image Representation

Images from the Database

Scanned and rescaled to 16× 16-pixel grayscale images.

Pixels take floating point values between -1 (white) and 1
(black).
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The Database

7291 handwritten digits collected by the U.S. Postal Service. 1

Breakdown of Digits

Digit Sample Size

0 1194
1 1005
2 731
3 658
4 652
5 556
6 664
7 645
8 542
9 644

1
Database retrieved from http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
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The Algorithms

We try two classification algorithms.

Singular Value Decomposition Based Algorithm

Tangent Distance Algorithm
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SVD Based Algorithm

First Algorithm:

The SVD Based Algorithm
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How We Handle the Database

Unroll the 16× 16-pixel images into vectors in R256.

Collect all the different types (0 through 9) of unrolled images.

Place all unrolled images of type i ∈ {0, 1, ..., 9} into the
matrix Di as the columns.

D5 =

 | | | ... |
5 5 5 ... 5
| | | ... |


D5 ∈ R256×556

Notice there are many more columns than rows.
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The Column Space and Least Squares

Take a test image d ∈ R256.

D5 =

 | | | ... |
5 5 5 ... 5
| | | ... |

 , d =?

Is d a linear combination of the columns of some Di?

How close is d to being a linear combination of the columns
of Di?

Solve a least squares problem!

ρi = min
x
‖Dix − d‖22

Observe: We are interested in the residual ρi and not the x .
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A Classification Algorithm

Let d ∈ R256 be a test digit to classify and let i ∈ {0, 1, ..., 9}.
Form the Di matrices (as described before) for every i .

For every i , find ρi = minx ‖Dix − d‖22.

Compute mini{ρi} and classify d as a digit of type “i”.

The residual can be found by using brute force to solve the least
squares problem, but this is expensive. We will show how to
implement this algorithm efficiently by using properties of the SVD.
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Singular Value Decomposition Theorem

Theorem (Singular Value Decomposition)

Let A ∈ Rm×n be a nonzero matrix with rank r . Then A can be
expressed as a product A = UΣV T , where U ∈ Rm×m and
V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is a “diagonal” matrix
with diagonal entries (called singular values)
σ1 ≥ σ2 ≥ ... ≥ σr > 0 = σr+1 = ... = σn. Furthermore, the
columns of U (called singular vectors) corresponding to nonzero
singular values form an orthogonal basis for the column space of A.

U =
[
u1 · · · um

]
, Σ =


σ1 0 · · · 0 0

0
. . .

. . . 0 0
...

. . . σr

...
...

0 0 · · · 0 0

 , V =
[
v1 · · · vn

]
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SVD and Least Squares

Consider the following least squares problem for A ∈ Rm×n of rank
r where n >> m. The residual ρ is given by

ρ = min
x
‖Ax − d‖22 ⇔ AT Ax = AT d .

(Notice that Ax is in the column space of A)

Using the SVD A = UΣV T and the fact that the first r columns
of U span the column space of A

ρ = min
y
‖Ur y − d‖22 ⇔ UT

r Ur y = UT
r d ⇔ y = UT

r d .

Substituting gives an easy formula for computing the residual

ρ = ‖Ur UT
r d − d‖22.
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Reducing Computation Requirements

ρ = ‖UrU
T
r d − d‖22

1 ≤ r ≤ 256

The formula for the residual is nice, but for large values of r
computation time and storage requirements are high.

One way to make it more efficient is by approximation.
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SVD Approximation Theorem

The following theorem allows us to make the best possible rank k
approximation of a matrix A. For our purposes k << r (low rank
approximation).

Theorem (SVD Approximation)

Let A ∈ Rm×n be a nonzero matrix with rank r . Let σ1, ..., σr be
the singular values of A, with associated left and right singular
vectors u1, ..., ur and v1, ..., vr , respectively, and let k ≤ r . Then
A = UΣV T =

∑r
j=1 σjujv

T
j , and Ak =

∑k
j=1 σjujv

T
j is the best

rank k approximation for A under the 2-norm.

What other uses does the theorem have?
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SVD Image Compression

128× 128 image.
Left to right: (top) rank 1, 3, 10, (bottom) 20, 30, 98 (full).
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Proof of the SVD Approximation Theorem

Proof.

It’s clear that Ak =
Pk

j=1 σjujv
T
j has rank k. Computing ‖A− Ak‖2 we have

‖A− Ak‖2 =

˛̨̨̨
˛
˛̨̨̨
˛

nX
i=k+1

σiuiv
T
i

˛̨̨̨
˛
˛̨̨̨
˛
2

= ‖UΣk+1V
T‖2 = ‖Σk+1‖2 = σk+1.

Let B be a rank k m × n matrix, so it’s null space has dimension n − k. The
space spanned by {v1, ..., vk+1} has dimension k + 1. Since
(n − k) + (k + 1) > n, the intersection of N (B) and {v1, ..., vk+1} must be
non-trivial. Let h be a unit vector in their intersection. Then
h = c1v1 + · · ·+ ck+1vk+1 = Vk+1c with ‖h‖2 = 1.

‖A− B‖2 ≥ ‖(A− B)h‖2 = ‖Ah‖2 = ‖UΣV Th‖2 = ‖Σ(V Th)‖2

= ‖Σ(V TVk+1c)‖2 =

˛̨̨̨˛̨̨̨
Σ

»
Ik+1

0

–
c

˛̨̨̨˛̨̨̨
2

≥ σk+1‖c‖2 = σk+1.

Michael Mazack Algorithms for Handwritten Digit Recognition



Introduction
SVD Based Algorithm

Tangent Distance Algorithm
Closing Remarks

SVD Theorem
SVD Approximation Theorem
SVD Based Algorithm
Algorithm Test Results

Developing the SVD Based Algorithm

Corollary

Let A ∈ Rm×n be a nonzero matrix of rank r with singular value
decomposition A = UΣV T . Then the first k < r columns
u1, ..., uk of U form an orthogonal basis for the column space of
Ak . Furthermore, Uk = [u1 u2 ... uk ] implies UT

k Uk = I .

Proof.

Let Ak =
∑k

j=1 σjujv
T
j and y ∈ Rn. Observe that

Aky =
∑k

j=1 σjuj(vT
j y). This means u1, ..., uk form an orthogonal

basis for the column space of Ak . For the second part, notice that
the rows of matrix UT

k are orthogonal to the columns of Uk which
means UT

k Uk = I .
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The Singular Vectors of the Database

u1, ..., u10 for D2,D3,D5,D7.
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Developing the SVD Based Algorithm (cont.)

Corollary

Let A ∈ Rm×n be a nonzero matrix of rank r with a rank k
approximation Ak . The least squares problem minx ‖Ukx − d‖22 has
the solution x = UT

k d with residual ‖UkUT
k d − d‖22.

Before we used A to find the residual.

ρ = min
x
‖Ax − d‖22 ⇒ ρ = ‖Ur UT

r d − d‖22

(Notice that Ax is in the column space of A)

Now we use Ak to approximate the residual.

q = min
x
‖Akx − d‖22 ⇒ q = ‖UkUT

k d − d‖22

(Notice that Akx is in the column space of Ak)

Michael Mazack Algorithms for Handwritten Digit Recognition



Introduction
SVD Based Algorithm

Tangent Distance Algorithm
Closing Remarks

SVD Theorem
SVD Approximation Theorem
SVD Based Algorithm
Algorithm Test Results

Why Do We Use Fixed Low Rank Approximation?

Reduces the computation time (pre-compute Uk).

Gives a cheap formula for the residual.

Avoids disasters (some Di matrices span R256!).

Provides fairness (not all Di matrices have the same rank).
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The SVD Based Algorithm

Let i ∈ {0, 1, ..., 9}.

Do once at startup:

Form the Di matrices for every i .

Compute the SVD of each Di .

Do a rank k approximation of each Di and store each Uik .

Let d ∈ R256 be a test digit to classify.

For every i , compute qi = ‖Uik UT
ik

d − d‖22.

Compute mini{qi} and classify d as an “i”.
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SVD Based Algorithm Results

The following data are the test results for the SVD based algorithm
with a rank approximation of 10 on a sample of 2007 test digits.

Digit Sample Size Correct Incorrect Success Rate

0 359 353 6 98.329%
1 264 260 4 98.485%
2 198 179 19 90.404%
3 166 143 23 86.145%
4 200 183 17 91.500%
5 160 145 15 90.625%
6 170 160 10 94.118%
7 147 138 9 93.878%
8 166 149 17 89.759%
9 177 168 9 94.915%

Average Success Rate: 93.572%. Run time: 76 seconds.
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Tangent Distance Algorithm

Second Algorithm:

Tangent Distance Algorithm
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Transformations and Euclidean Distance

Consider rotating a digit p by an angle αp.

Using the vector form of p (i.e. p ∈ R256), we can represent all
rotations of the digit p by a parameterized curve s(p, αp) ⊂ R256

where αp is the angle of rotation. Notice s(p, 0) = p.

Michael Mazack Algorithms for Handwritten Digit Recognition



Introduction
SVD Based Algorithm

Tangent Distance Algorithm
Closing Remarks

Taylor Series Approximation
Tangent Distance
Transformations
Algorithm Test Results

Graphs of the Curves

The original distance between the curves and the minimum distance between
the parameterized curves (impossible to compute).

minαp ,αd ‖s(p, αp)− s(d , αd)‖22 ↓ R256
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Taylor Series Approximation

The the equation for the parameterized curve s(p, αp) is unknown
and nonlinear, but can be approximated by Taylor expansion

s(p, αp) = s(p, 0) +
ds

dαp
(p, 0)αp +O(α2

p) ≈ p + tpαp

where tp = ds
dα(p, 0) ∈ R256.

Now consider a test digit d ∈ R256 to classify and a parameterized
curve for it.

s(d , αd) = s(d , 0) +
ds

dαd
(d , 0)αd +O(α2

d) ≈ d + tdαd

Good Thing: We have linear approximations for s(p, αp) and
s(d , αd).
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What is Tangent Distance?

The tangent distance is an approximation to the minimum distance between
the parameterized curves.

min
αp ,αd

‖s(p, αp)− s(d , αd)‖22 ≈ min
αp ,αd

‖(p + tpαp)− (d + tdαd)‖22.
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Computing Tangent Distance

We can approximate the distance between the two curves by the
tangent distance.

min
αp ,αd

‖s(p, αp)− s(d , αd)‖22 ≈ min
αp ,αd

‖(p + tpαp)− (d + tdαd)‖22

= min
αp ,αd

‖(p − d)− (−tp td)(αp αd)T‖22 = tpd .

This is to say that finding the tangent distance tpd between p and
d is the same as solving this least squares problem.
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Multivariate Parameters

Consider doing k transformations (rotation, scaling, translation,
...) on a digit p. How will the tangent distance change?

Now s(p, ap) ⊂ R256 with ap = (α1 α2 ... αk)T . We can find
a multivariate Taylor expansion for s(p, ap)

s(p, ap) = s(p, 0) +
k∑

i=1

∂s

∂αi
(p, 0)αi +O(‖ap‖22) ≈ p + Tpap

Tp =

(
∂s

∂α1

∂s

∂α2
...

∂s

∂αk

)
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Computing Tangent Distance in the Multivariate Case

How does computing the tangent distance change in the
multivariate case?

min
ap ,ad

‖(p + Tpap)− (d + Tdad)‖22

= min
ap ,ad

‖(p − d)− (−Tp Td)(ap ad)T‖22 = tpd .

It’s still a least squares problem! Now the question is what exactly
are Tp and Td?

Tp =

(
∂s

∂α1

∂s

∂α2
...

∂s

∂αk

)
Answer: Tp is a Jacobian matrix consisting of derivatives of
transformations evaluated at (p, 0). Td is the same thing for d at
(d , 0).
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Derivatives of Transformations

Let f (x , y) ∈ R be a differentiable function such that for a digit
matrix P ∈ R16×16, f (i , j) = Pij for all i , j ∈ {1, 2, ..., 16} (e.g.
f (3, 4) = P3,4).

P ⇔ p R16×16 ⇔ R256

The derivatives of the transformations at α = 0 are

Translation in the x direction fx
Translation in the y direction fy
Rotation about the “origin” yfx − xfy
Scaling xfx + yfy
Stretch/compress along the horizontal and vertical axes xfx − yfy
Stretch/compress along the diagonals yfx + xfy
Thickening (fx)2 + (fy )2
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Derivation of the Scaling Derivative

Let f (x , y) be as before. Scaling is achieved by

s(p, αs)(x , y) = f ((1 + αs)x , (1 + αs)y).

Using the chain rule to differentiate and evaluating at αs = 0 we
get

d

dαs
(s(p, αs)(x , y))|αs=0 = xfx + yfy .

The derivation of the other derivatives is mostly the same with the
exception of the thickening derivative.
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Thickening Derivative

Let f (x , y) be as before. The thickened image is obtained by
defining a new function

gα(x , y) = max
‖r‖<α

f (x + r1, y + r2)

where r = (r1, r2) is a vector in R2.

For a complete derivation and discussion see Simard et. al.
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How to Compute fx and fy

fx(i , j) ≈ f (i + 1, j)− f (i − 1, j)

2

fx(1, j) ≈ f (2, j)− f (1, j)

1

fx(16, j) ≈ f (16, j)− f (15, j)

1

All derivatives can be formed from fx and fy .

Compute fx and fy using finite differences.

Use two-sided finite differences in the interior.

Use one-sided finite differences at the ends.
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Derivatives for Selected Digits

Selected Derivatives of Transformations

Listed Left to Right: Original image, x-translation, y -translation,
rotation, scaling, stretch/compress along horizontal/vertical,
stretch/compress along diagonals, thickening.
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The Tangent Distance Algorithm

Do once at startup:

Construct the tangent matrix Tp for every p in the database.

Let d ∈ R256 be a test digit to classify.

Construct the tangent matrix Td .

Compute the tangent distance tpd between d and every p.

Find r = minp{tpd}.
Classify d as the digit corresponding to the p that gives r .
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Tangent Distance Algorithm Results

The following data are the test results for the tangent distance
algorithm on a sample of 2007 test digits.

Digit Sample Size Correct Incorrect Success Rate

0 359 289 70 80.501%
1 264 255 9 96.591%
2 198 172 26 86.869%
3 166 145 21 87.349%
4 200 145 55 72.500%
5 160 143 17 89.375%
6 170 161 9 94.706%
7 147 137 10 93.197%
8 166 130 36 78.313%
9 177 166 11 93.785%

Average Success Rate: 86.846%. Run time: 25.5 hours. (7291 × 2007 = 14,633,037).
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Summary of Results

Below are the test results for both algorithms. 2

SVD Based Algorithm with Rank Approximation of 10:

Accuracy: 93.5%

Run time: 76 seconds

Suited for real time.

Tangent Distance Algorithm:

Accuracy: 86.8% (91%)

Run time: 25.5 hours (18 hours)

Suited for “tie-breaking” (smallest ρi is close to another).

Omitting the thickening transformation yielded the numbers in parentheses.
2
The testing platform was a 2.4 GHz AMD Athlon 64 X2 processor machine with 2 GB of memory running

Debian GNU/Linux. The software used to test the algorithms was Octave 3.0 running on a single core.
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Further Reading

Further reading about the two algorithms.

L. Eldén. Matrix Methods in Data Mining and Pattern
Recognition. SIAM, Philadelphia, 2007; 113-122.

B. Savas. Analyses and Tests of Handwritten Digit
Algorithms. Master’s thesis, Mathematics Department,
Linköping University, 2002.

P.Y. Simard, Y.A. Le Cun, J.S. Denker and B. Victorri.
Transformation invariance in pattern recognition - tangent
distance and tangent propagation. International Journal of
Imaging Systems and Technology, 2001; 181-194.
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The End!
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